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A toolkit of PIOPs



Warmup: PIOP for Equality (Schwartz-Zippel Lemma)
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Prover 
(p1, p2)

Verifier 
 
 

p1

p1 = p2

p2

• Completeness: If , then definitely . 

• Soundness: If , then  is a root of 

. But since  is random, this happens with probability  

• Generalizes to multilinear/multivariate polynomials.

p1 = p2 p1(r) = p2(r)
p1 ≠ p2 p1(r) = p2(r) ⟹ r

q := p1 − p2 r
deg(q)

|𝔽 |

r ← 𝔽

p1(r) ?= p2(r)



Sumcheck protocol
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Prover 
p

Verifier 
 
 

∑
x1∈{0,1}

∑
x2∈{0,1}

… ∑
xn∈{0,1}

p(x1, x2, …, xn) = σ1

p

r1 s1(0) + s1(1) ?= σ1

s2(0) + s2(1) ?= s1(r1)

s1(X1)

r2

s2(X2)

sn(Xn)
sn(0) + sn(1) ?= sn−1(rn−1)



ZKP MOOC

Multivariate Zerocheck [LFKN90]
▪ Input: V given oracle access to a -variate 

polynomial  over field  and claimed sum . 
▪ Goal: check the claim:  

n
p 𝔽 σ = σ1

∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0
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ZKP MOOC

Zerocheck Protocol
• Obervation:  iff 

, where  is binary decomposition of . 

• Idea: Simply evaluate  at a random point !

• But how to do evaluation? Naively, would have to query all points of !


• Idea: sumcheck!   is a sum check claim!


• Problem:  is not a polynomial, but a function!

• Idea: interpolate into polynomial! Let  be interpolation over hypercube

• At the end of the sumcheck protocol, verifier needs to evaluate  and  at random 

point. How to evaluate the latter? 

∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0
q(X ) = ∑

i

p( ⃗i) ⋅ Xi = 0 ⃗i i

q(X ) r
p

q(r) = ∑
i

p( ⃗i) ⋅ ri = 0

(1,r, r2, …)
r̃(X1, …, Xn)

p r̃
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ZKP MOOC

Zerocheck Protocol
• Obervation: Use multilinear polynomials instead of univariate! 
• We want multilinear  such that   iff 
 
  

• What to put in ???

• For univariate we used powers of ; what can we use for multilinear?

• Lagrange basis polynomials, ie !

q ∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0

q(X1, …, Xn) = ∑
i

p( ⃗i) ⋅ ??? = 0

X
eq(i, X1, …, Xn)
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Multilinear ZeroCheck
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Prover(p) Verifier  
 
 

(A)

∀ h ∈ {0,1}n, p(h) = 0

r

Sumcheck for 

p( ⃗X ) ⋅ eq(r, ⃗X )



Univariate ZeroCheck
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Prover(p) Verifier  
 
 

(A)p

∀ h ∈ H, p(h) = 0

• Completeness: Follows from lemma, and completeness of previous PIOP. 
• Soundness: The lemma means that we have to check only equality of polynomials 

via the previous PIOP, and so soundness reduces to that of the previous PIOP.

r ← 𝔽

p(r) = q(r)vH(r)

q

Lemma:  if and only if  such that .∀h ∈ H, p(h) = 0 ∃q p = q ⋅ vH



Lemma: univariate sum check 
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∑
h∈H

p(h) = σ

∃ g s.t. p(X) − (X ⋅ g(X)+ σ
|H |

) = 0 over H

⟺



A PIOP for R1CS



R1CS
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An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][ ]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)



Strawman 1
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Prover(F, x, w) Verifier  
 
 

(F, x)w

Az ∘ Bz = Cz

• Completeness and Soundness are trivial 
• What about efficiency?

Az ∘ Bz ?= Cz



Strawman 1
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Prover(F, x, w) Verifier  

1. Compute . 
2. Check 

(F, x)

zM = Mz
zA ∘ zB = zC

w

Az ∘ Bz = Cz

• Completeness and Soundness are trivial 
• What about efficiency?

O(n)

O(n)



What checks do we need?
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Step 2: Correct matrix multiplication 
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each ,  i zA[i] ⋅ zB[i] = zC[i]



PIOP for Hadamard Product
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Prover  
1. Let  be a set of size . 
2. Interpolate  to get . 

3. Run PIOP for zerocheck for polynomial 
. 

 

(F, x, w)
H ⊆ 𝔽 n

zA, zB, zC pA, pB, pC

pA ⋅ pB − pC

Verifier  
 
 

Run PIOP verifier for 
zerocheck for 

polynomial 
. 

 

(F, x)

pA ⋅ pB − pC

pA pB pC



Soundness

17

Strategy: Use adversary PHP against PIOP for HP 
to get adversary PZC against PIOP for ZeroCheck

PZC

Verifier  
 
 

(A)
p := pA ⋅ pB − pCPHP pA pB pC

If  such that , then , and so  on , yet ZC verifier 
accepts, which breaks soundness of the PIOP for ZeroCheck.

∃i zA[i] ⋅ zB[i] ≠ zC[i] p(hi) ≠ 0 p ≠ 0 H



What checks do we need?
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Step 2: Correct matrix multiplication 
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each ,  i zA[i] ⋅ zB[i] = zC[i]



Starting point: IP for MV checks
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Prover  
1. Compute  

 

(M, z)
zM := Mz

Verifier  
 
 
 

(M)
zM

 r $← 𝔽
⃗r := (1,r, …, rn−1)

⟨ ⃗r, zM⟩ ?= ⟨ ⃗r⊤M, z⟩

z

[M][        ]⃗r []z[        ]⃗r [ ]zM
?=

• Soundness: If there exists  such that , then  
wp at most 

i zM[i] ≠ Mz[i] ⟨ ⃗r, zM⟩ = ⟨ ⃗r⊤M, z⟩
1/ |𝔽 |



Next point: PIOP for MV checks
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Prover  
1. Compute  
2. Interpolate  over  to get  

(M, z)
zM := Mz
zM H ̂zM

Verifier  

1.  
2.  
3. Interpolate  to get 

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

̂zMz

How to compute inner products ?⟨ ̂r, ̂zM⟩, ⟨ ̂rM, ̂z⟩



Sumcheck → Inner product check
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For vectors, we have that ⟨ ⃗a, b⃗⟩ =
n

∑
i=1

aibi

What if  are represented as their interpolations ?( ⃗a, b⃗) ( ̂a, b̂)

Ans: 
n

∑
i=1

aibi = ∑
h∈H

̂a(h) ⋅ b̂(h)



Next point: PIOP for MV checks
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Prover  
1. Compute  
2. Interpolate  over  to get  

 

3. Interpolate  to get   
4. Invoke sumcheck PIOP prover on   

(M, z)
zM := Mz
zM H ̂zM

( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

Verifier  

1.  
2.  
3. Interpolate  to get  

 

4. Invoke sumcheck PIOP verifier on   

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

̂zMz

r

̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X ) ̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X )



Sublinear verification for 
PIOP-based SNARKs



Holographic PIOPs [CHMMVW20, COS20]
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Indexer Function F pF

Prover 
 

 
 
 
 

(F, x, w)
Verifier 

 
 
 
 
 

x
r1

…
QueryQ

Decisionb

rt

p1

pt

Introduce a new algorithm to preprocess the circuit

Verifier does not 
read F, and so 

can be sublinear!
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𝖵(𝖼𝗏𝗄, x) 
 
 
 
 
 

𝖯(𝖼𝗉𝗄, x, w)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

Q

SETUP(1λ, N) 
 
 
 

max size S

(ck, vk)

PIOP(N) 

output universal parameters pp = (ck, vk) 

PC.SETUP(S) 

Holographic PIOPs + PC Schemes → Preprocessing SNARKs 

+ Fiat—Shamir to get non-interactivity

INDEX(pp, F) 
 
 
 
 

 oraclesF

cmF

PIOP.INDEXER(F)

prover key cpk = (ck, F) 
verifier key cvk = (vk, cmF)output circuit 

PC.COMMIT 

Prover answers queries to  oracles tooF



Verifier Complexity of Holographic PIOP-based SNARKs

26

Holography enables sublinear verification for  
arbitrary circuits computations!

T(SNARK.V) = T(CHECK) + T(HIOP.V)

Now sublinear!


