
Pratyush Mishra
UPenn
Fall 2025

Succinct Arguments

Lecture 04:  
PIOP for R1CS

A toolkit of PIOPs

Warmup: PIOP for Equality (Schwartz-Zippel Lemma)

3

Prover
(p1, p2)

Verifier

p1

p1 = p2

p2

• Completeness: If , then definitely .

• Soundness: If , then is a root of

. But since is random, this happens with probability

• Generalizes to multilinear/multivariate polynomials.

p1 = p2 p1(r) = p2(r)
p1 ≠ p2 p1(r) = p2(r) ⟹ r

q := p1 − p2 r
deg(q)

|𝔽 |

r ← 𝔽

p1(r) ?= p2(r)

Sumcheck protocol

4

Prover
p

Verifier

∑
x1∈{0,1}

∑
x2∈{0,1}

… ∑
xn∈{0,1}

p(x1, x2, …, xn) = σ1

p

r1 s1(0) + s1(1) ?= σ1

s2(0) + s2(1) ?= s1(r1)

s1(X1)

r2

s2(X2)

sn(Xn)
sn(0) + sn(1) ?= sn−1(rn−1)

ZKP MOOC

Multivariate Zerocheck [LFKN90]
▪ Input: V given oracle access to a -variate

polynomial over field and claimed sum .
▪ Goal: check the claim:

n
p 𝔽 σ = σ1

∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0

5

ZKP MOOC

Zerocheck Protocol
• Obervation: iff

, where is binary decomposition of .

• Idea: Simply evaluate at a random point !

• But how to do evaluation? Naively, would have to query all points of !

• Idea: sumcheck! is a sum check claim!

• Problem: is not a polynomial, but a function!

• Idea: interpolate into polynomial! Let be interpolation over hypercube

• At the end of the sumcheck protocol, verifier needs to evaluate and at random

point. How to evaluate the latter?

∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0
q(X) = ∑

i

p(⃗i) ⋅ Xi = 0 ⃗i i

q(X) r
p

q(r) = ∑
i

p(⃗i) ⋅ ri = 0

(1,r, r2, …)
r̃(X1, …, Xn)

p r̃

6

ZKP MOOC

Zerocheck Protocol
• Obervation: Use multilinear polynomials instead of univariate!
• We want multilinear such that iff 
 

• What to put in ???

• For univariate we used powers of ; what can we use for multilinear?

• Lagrange basis polynomials, ie !

q ∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0

q(X1, …, Xn) = ∑
i

p(⃗i) ⋅ ??? = 0

X
eq(i, X1, …, Xn)

7

Multilinear ZeroCheck

8

Prover(p) Verifier

(A)

∀ h ∈ {0,1}n, p(h) = 0

r

Sumcheck for

p(⃗X) ⋅ eq(r, ⃗X)

Univariate ZeroCheck

9

Prover(p) Verifier

(A)p

∀ h ∈ H, p(h) = 0

• Completeness: Follows from lemma, and completeness of previous PIOP.
• Soundness: The lemma means that we have to check only equality of polynomials

via the previous PIOP, and so soundness reduces to that of the previous PIOP.

r ← 𝔽

p(r) = q(r)vH(r)

q

Lemma: if and only if such that .∀h ∈ H, p(h) = 0 ∃q p = q ⋅ vH

Lemma: univariate sum check

10

∑
h∈H

p(h) = σ

∃ g s.t. p(X) − (X ⋅ g(X)+ σ
|H |

) = 0 over H

⟺

A PIOP for R1CS

R1CS

12

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)

Strawman 1

13

Prover(F, x, w) Verifier

(F, x)w

Az ∘ Bz = Cz

• Completeness and Soundness are trivial
• What about efficiency?

Az ∘ Bz ?= Cz

Strawman 1

14

Prover(F, x, w) Verifier

1. Compute .
2. Check

(F, x)

zM = Mz
zA ∘ zB = zC

w

Az ∘ Bz = Cz

• Completeness and Soundness are trivial
• What about efficiency?

O(n)

O(n)

What checks do we need?

15

Step 2: Correct matrix multiplication
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each , i zA[i] ⋅ zB[i] = zC[i]

PIOP for Hadamard Product

16

Prover
1. Let be a set of size .
2. Interpolate to get .

3. Run PIOP for zerocheck for polynomial
.

(F, x, w)
H ⊆ 𝔽 n

zA, zB, zC pA, pB, pC

pA ⋅ pB − pC

Verifier

Run PIOP verifier for
zerocheck for

polynomial
.

(F, x)

pA ⋅ pB − pC

pA pB pC

Soundness

17

Strategy: Use adversary PHP against PIOP for HP
to get adversary PZC against PIOP for ZeroCheck

PZC

Verifier

(A)
p := pA ⋅ pB − pCPHP pA pB pC

If such that , then , and so on , yet ZC verifier
accepts, which breaks soundness of the PIOP for ZeroCheck.

∃i zA[i] ⋅ zB[i] ≠ zC[i] p(hi) ≠ 0 p ≠ 0 H

What checks do we need?

18

Step 2: Correct matrix multiplication
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each , i zA[i] ⋅ zB[i] = zC[i]

Starting point: IP for MV checks

19

Prover
1. Compute

(M, z)
zM := Mz

Verifier

(M)
zM

 r $← 𝔽
⃗r := (1,r, …, rn−1)

⟨ ⃗r, zM⟩ ?= ⟨ ⃗r⊤M, z⟩

z

[M][]⃗r []z[]⃗r []zM
?=

• Soundness: If there exists such that , then
wp at most

i zM[i] ≠ Mz[i] ⟨ ⃗r, zM⟩ = ⟨ ⃗r⊤M, z⟩
1/ |𝔽 |

Next point: PIOP for MV checks

20

Prover
1. Compute
2. Interpolate over to get

(M, z)
zM := Mz
zM H ̂zM

Verifier

1.
2.
3. Interpolate to get

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
(⃗r, ⃗r⊤M) (̂r, ̂rM)

̂zMz

How to compute inner products ?⟨ ̂r, ̂zM⟩, ⟨ ̂rM, ̂z⟩

Sumcheck → Inner product check

21

For vectors, we have that ⟨ ⃗a, b⃗⟩ =
n

∑
i=1

aibi

What if are represented as their interpolations ?(⃗a, b⃗) (̂a, b̂)

Ans:
n

∑
i=1

aibi = ∑
h∈H

̂a(h) ⋅ b̂(h)

Next point: PIOP for MV checks

22

Prover
1. Compute
2. Interpolate over to get

3. Interpolate to get
4. Invoke sumcheck PIOP prover on

(M, z)
zM := Mz
zM H ̂zM

(⃗r, ⃗r⊤M) (̂r, ̂rM)

Verifier

1.
2.
3. Interpolate to get

4. Invoke sumcheck PIOP verifier on

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
(⃗r, ⃗r⊤M) (̂r, ̂rM)

̂zMz

r

̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X) ̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X)

Sublinear verification for
PIOP-based SNARKs

Holographic PIOPs [CHMMVW20, COS20]

24

Indexer Function F pF

Prover

(F, x, w)
Verifier

x
r1

…
QueryQ

Decisionb

rt

p1

pt

Introduce a new algorithm to preprocess the circuit

Verifier does not
read F, and so

can be sublinear!

25

𝖵(𝖼𝗏𝗄, x)

𝖯(𝖼𝗉𝗄, x, w)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

Q

SETUP(1λ, N)

max size S

(ck, vk)

PIOP(N)

output universal parameters pp = (ck, vk)

PC.SETUP(S)

Holographic PIOPs + PC Schemes → Preprocessing SNARKs

+ Fiat—Shamir to get non-interactivity

INDEX(pp, F)

 oraclesF

cmF

PIOP.INDEXER(F)

prover key cpk = (ck, F) 
verifier key cvk = (vk, cmF)output circuit

PC.COMMIT

Prover answers queries to oracles tooF

Verifier Complexity of Holographic PIOP-based SNARKs

26

Holography enables sublinear verification for
arbitrary circuits computations!

T(SNARK.V) = T(CHECK) + T(HIOP.V)

Now sublinear!

