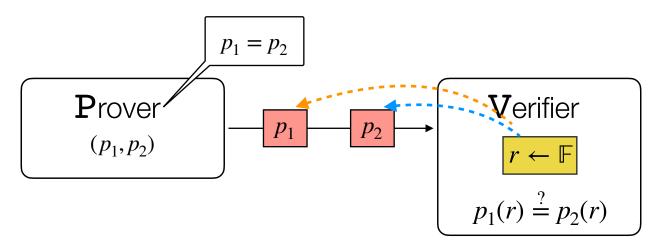
Succinct Arguments

Lecture 04: PIOP for R1CS

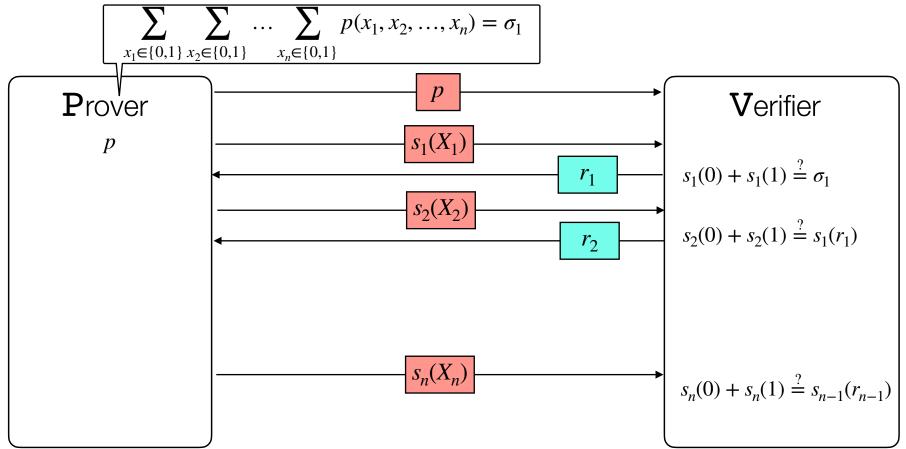
A toolkit of PIOPs

Warmup: PIOP for Equality (Schwartz-Zippel Lemma)



- Completeness: If $p_1 = p_2$, then definitely $p_1(r) = p_2(r)$.
- **Soundness**: If $p_1 \neq p_2$, then $p_1(r) = p_2(r) \implies r$ is a root of $q := p_1 p_2$. But since r is random, this happens with probability $\frac{\deg(q)}{\|\mathbb{F}\|}$
- Generalizes to multilinear/multivariate polynomials.

Sumcheck protocol



Multivariate Zerocheck [LFKN90]

- Input: \lor given oracle access to a n-variate polynomial p over field \mathbb{F} and claimed sum $\sigma = \sigma_1$.
- Goal: check the claim:

$$\forall b_1, b_2, ..., b_n \in \{0,1\}, \ p(b_1, ..., b_n) = 0$$

Zerocheck Protocol

- Obervation: $\forall \underline{b}_1, b_2, ..., b_n \in \{0,1\}, \ p(b_1, ..., b_n) = 0$ iff $q(X) = \sum_i p(i) \cdot X^i = 0$, where i is binary decomposition of i.
- Idea: Simply evaluate q(X) at a random point r!
- But how to do evaluation? Naively, would have to query all points of p!
- Idea: sumcheck! $q(r) = \sum_{i} p(\vec{i}) \cdot r^{i} = 0$ is a sum check claim!
- Problem: $(1, r, r^2, ...)$ is not a polynomial, but a function!
- Idea: interpolate into polynomial! Let $\tilde{r}(X_1, ..., X_n)$ be interpolation over hypercube
- At the end of the sumcheck protocol, verifier needs to evaluate p and \tilde{r} at random point. How to evaluate the latter?

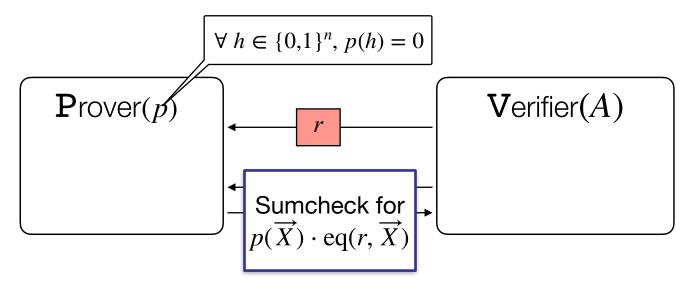
Zerocheck Protocol

- Obervation: Use multilinear polynomials instead of univariate!
- We want multilinear q such that $\forall b_1, b_2, ..., b_n \in \{0,1\}, \ p(b_1, ..., b_n) = 0$ iff $p(\vec{b}_1, b_2, ..., b_n) = 0$

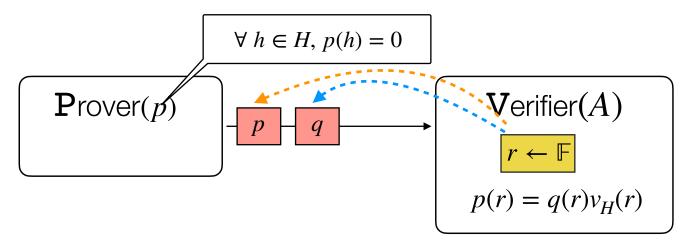
$$q(X_1, ..., X_n) = \sum_{i} p(\vec{i}) \cdot ??? = 0$$

- What to put in ???
- For univariate we used powers of X; what can we use for multilinear?
- Lagrange basis polynomials, ie eq $(i, X_1, ..., X_n)$!

Multilinear ZeroCheck



Univariate ZeroCheck



Lemma: $\forall h \in H, \ p(h) = 0$ if and only if $\exists q$ such that $p = q \cdot v_H$.

- Completeness: Follows from lemma, and completeness of previous PIOP.
- **Soundness**: The lemma means that we have to check only equality of polynomials via the previous PIOP, and so soundness reduces to that of the previous PIOP.

Lemma: univariate sum check

$$\sum_{h \in H} p(h) = \sigma$$

$$\exists g \text{ s.t. } p(X) - (X \cdot g(X) + \frac{\sigma}{|H|}) = 0 \text{ over } H$$

A PIOP for R1CS

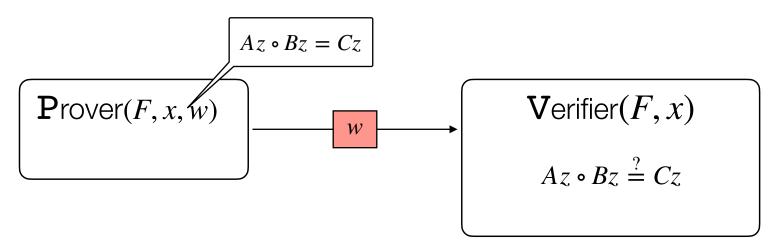
R₁CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

$$(F := (\mathbb{F}, n \in \mathbb{N}, A, B, C), x, w)$$

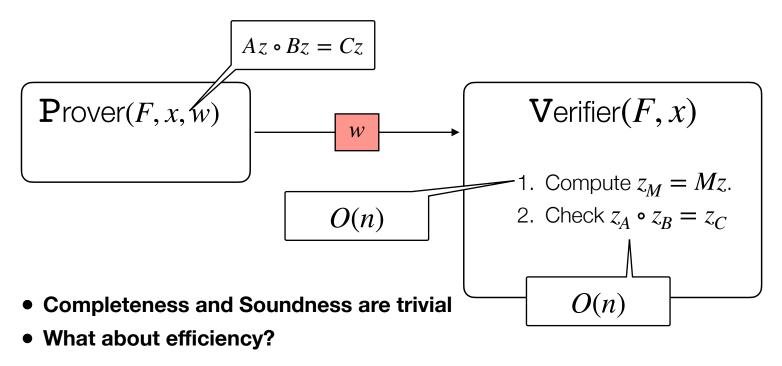
$$z := \begin{bmatrix} x \\ w \end{bmatrix} \ \ \mathbf{A} \begin{bmatrix} A \\ Z \end{bmatrix} \circ \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} C \\ z \end{bmatrix} \begin{bmatrix} z \end{bmatrix}$$

Strawman 1



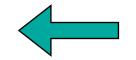
- Completeness and Soundness are trivial
- What about efficiency?

Strawman 1



What checks do we need?

Step 1: Correct Hadamard product check that for each i, $z_A[i] \cdot z_B[i] = z_C[i]$

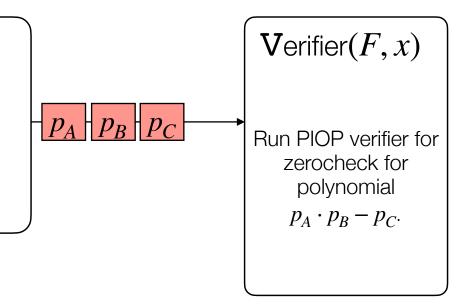


Step 2: Correct matrix multiplication check that $Mz = z_M \ \forall M \in \{A, B, C\}$

PIOP for Hadamard Product

Prover(F, x, w)

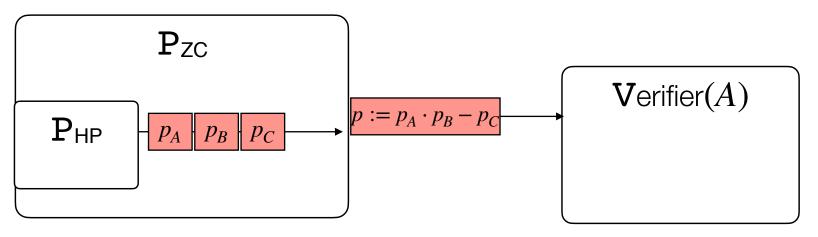
- 1. Let $H \subseteq \mathbb{F}$ be a set of size n.
- 2. Interpolate z_A, z_B, z_C to get p_A, p_B, p_C .
- 3. Run PIOP for zerocheck for polynomial $p_A \cdot p_B p_C$.



Soundness

Strategy: Use adversary \mathbf{P}_{HP} against PIOP for HP

to get adversary \mathbf{P}_{ZC} against PIOP for ZeroCheck

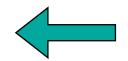


If $\exists i$ such that $z_A[i] \cdot z_B[i] \neq z_C[i]$, then $p(h_i) \neq 0$, and so $p \neq 0$ on H, yet ZC verifier accepts, which breaks soundness of the PIOP for ZeroCheck.

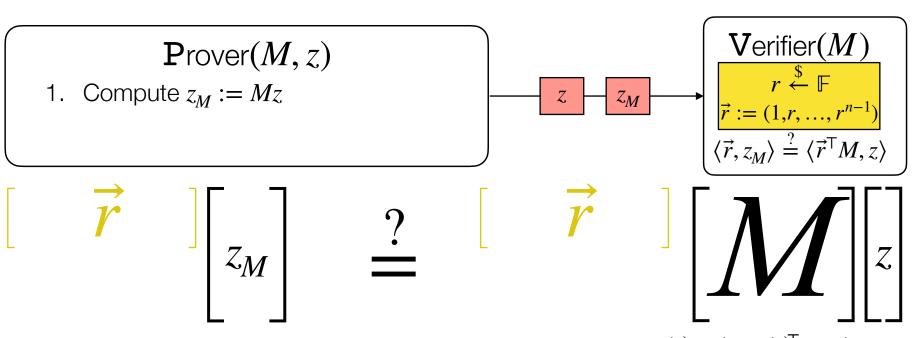
What checks do we need?

Step 1: Correct Hadamard product check that for each i, $z_A[i] \cdot z_B[i] = z_C[i]$

Step 2: Correct matrix multiplication check that $Mz = z_M \ \forall M \in \{A, B, C\}$

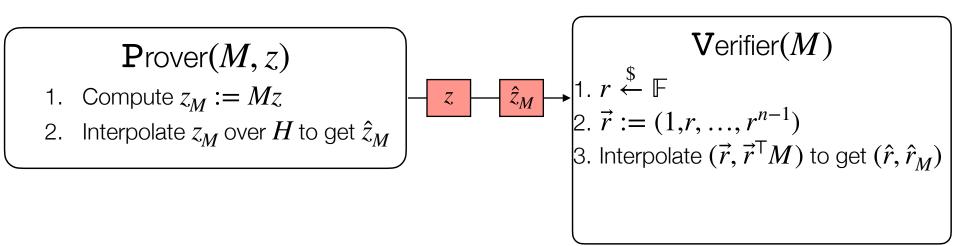


Starting point: IP for MV checks



• **Soundness**: If there exists i such that $z_M[i] \neq Mz[i]$, then $\langle \vec{r}, z_M \rangle = \langle \vec{r}^\top M, z \rangle$ wp at most $1/|\mathbb{F}|$

Next point: PIOP for MV checks



How to compute inner products $\langle \hat{r}, \hat{z}_M \rangle, \langle \hat{r}_M, \hat{z} \rangle$?

Sumcheck → Inner product check

For vectors, we have that
$$\langle \vec{a}, \vec{b} \rangle = \sum_{i=1}^{n} a_i b_i$$

What if (\vec{a}, \vec{b}) are represented as their interpolations (\hat{a}, \hat{b}) ?

Ans:
$$\sum_{i=1}^{n} a_i b_i = \sum_{h \in H} \hat{a}(h) \cdot \hat{b}(h)$$

Next point: PIOP for MV checks

Prover(M, z)

- 1. Compute $z_M := Mz$
- 2. Interpolate z_M over H to get \hat{z}_M

- 3. Interpolate $(\vec{r}, \vec{r}^T M)$ to get (\hat{r}, \hat{r}_M)
- 4. Invoke sumcheck PIOP prover on

$$\hat{r}(X) \cdot \hat{z}_M(X) - \hat{r}_M(X) \cdot \hat{z}(X)$$

- 1. $r \stackrel{\$}{\leftarrow} \mathbb{F}$
- $|\vec{r}| = (1, r, ..., r^{n-1})$
- 3. Interpolate $(\vec{r}, \vec{r}^T M)$ to get (\hat{r}, \hat{r}_M)

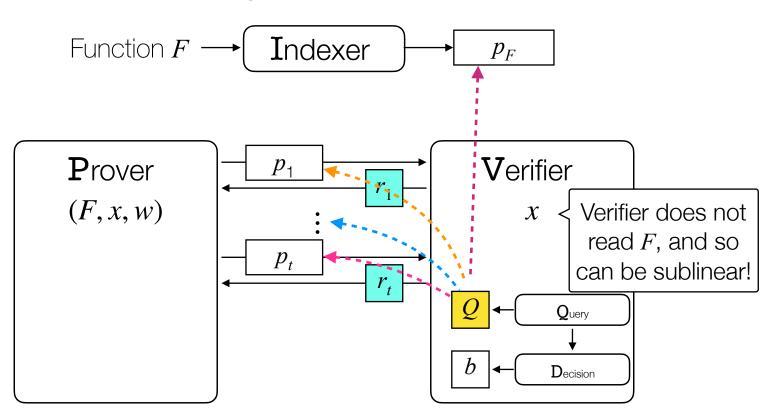
4. Invoke sumcheck PIOP verifier on

$$\hat{r}(X) \cdot \hat{z}_M(X) - \hat{r}_M(X) \cdot \hat{z}(X)$$

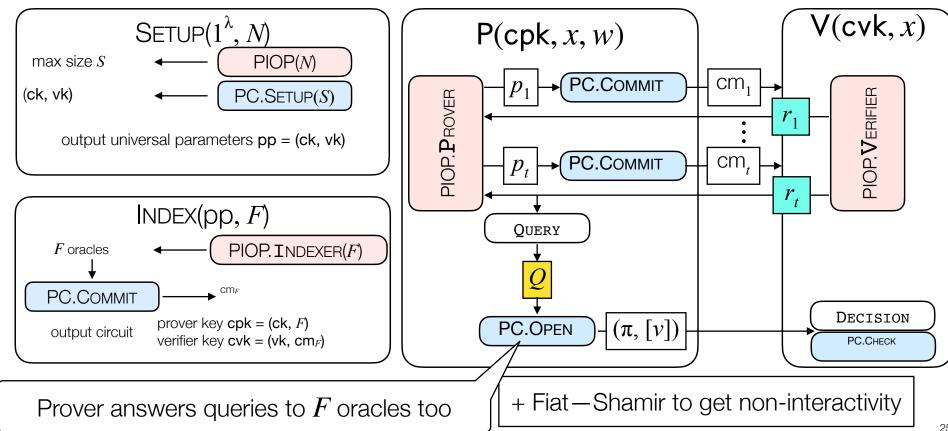
Sublinear verification for PIOP-based SNARKs

Holographic PIOPs [CHMMVW20, COS20]

Introduce a new algorithm to preprocess the circuit



Holographic PIOPs + PC Schemes → Preprocessing SNARKs



Verifier Complexity of Holographic PIOP-based SNARKs

$$T(SNARK.V) = T(CHECK) + T(HIOP.V)$$

Now sublinear!

Holography enables sublinear verification for arbitrary circuits computations!